401 research outputs found

    Vitellogenin Receptor as a Target for Tick Control: A Mini-Review

    Get PDF
    While much effort has been put into understanding vitellogenesis in insects and other organisms, much less is known of this process in ticks. There are several steps that facilitate yolk formation in developing oocytes of which the vitellogenin receptor (VgR) is a key component. The tick VgR binds vitellogenin (Vg) circulating in the hemolymph to initiate receptor-mediated endocytosis and its transformation into vitellin (Vn). The conversion of Vg into Vn, the final form of the yolk protein, occurs inside oocytes of the female tick ovary. Vn is critical to tick embryos since it serves as the nutritional source for their development, survival, and reproduction. Recent studies also suggest that pathogenic microbes, i.e., Babesia spp., that rely on ticks for propagation and dissemination likely hitchhike onto Vg molecules as they enter developing oocytes through the VgR. Suppressing VgR messenger RNA synthesis via RNA interference (RNAi) completely blocked Babesia spp. transmission into developing tick oocytes, thereby inhibiting vertical transmission of these pathogenic microbes from female to eggs. To date, VgRs from only four tick species, Dermacentor variabilis, Rhipicephalus microplus, Amblyomma hebraeum, and Haemaphysalis longicornis, have been fully sequenced and characterized. In contrast, many more VgRs have been described in various insect species. VgR is a critical component in egg formation and maturation that can serve as a precise target for tick control. However, additional research will help identify unique residues within the receptor that are specific to ticks or other arthropod disease vectors while avoiding cross-reactivity with non-target species. Detailed knowledge of the molecular structure and functional role of tick VgRs will enable development of novel vaccines to control ticks and tick-borne diseases

    Vitellogenin Receptor as a Target for Tick Control: A Mini-Review

    Get PDF
    While much effort has been put into understanding vitellogenesis in insects and other organisms, much less is known of this process in ticks. There are several steps that facilitate yolk formation in developing oocytes of which the vitellogenin receptor (VgR) is a key component. The tick VgR binds vitellogenin (Vg) circulating in the hemolymph to initiate receptor-mediated endocytosis and its transformation into vitellin (Vn). The conversion of Vg into Vn, the final form of the yolk protein, occurs inside oocytes of the female tick ovary. Vn is critical to tick embryos since it serves as the nutritional source for their development, survival, and reproduction. Recent studies also suggest that pathogenic microbes, i.e., Babesia spp., that rely on ticks for propagation and dissemination likely β€œhitchhike” onto Vg molecules as they enter developing oocytes through the VgR. Suppressing VgR messenger RNA synthesis via RNA interference (RNAi) completely blocked Babesia spp. transmission into developing tick oocytes, thereby inhibiting vertical transmission of these pathogenic microbes from female to eggs. To date, VgRs from only four tick species, Dermacentor variabilis, Rhipicephalus microplus, Amblyomma hebraeum, and Haemaphysalis longicornis, have been fully sequenced and characterized. In contrast, many more VgRs have been described in various insect species. VgR is a critical component in egg formation and maturation that can serve as a precise target for tick control. However, additional research will help identify unique residues within the receptor that are specific to ticks or other arthropod disease vectors while avoiding cross-reactivity with non-target species. Detailed knowledge of the molecular structure and functional role of tick VgRs will enable development of novel vaccines to control ticks and tick-borne diseases

    Glass Capillary Tube Feeding: A Method for Infecting Nymphal Ixodes scapularis (Acari: Ixodidae) with the Lyme Disease Spirochete Borrelia burgdorferi

    Get PDF
    We evaluated an artificial capillary feeding method to infect nymphal Ixodes scapularis (Say) ticks with Borrelia burgdorferi, the causative agent of Lyme disease. Thirty to 70% of the nymphs were infected after feeding for 2.5 h from glass capillary tubes filled with a solution of spirochetes. Capillary infection was stable and persisted in the nymphs for at least 10 d after feeding. Capillary feeding also maintained natural vector competence patterns because I. scapularis ticks acquired infection unlike Dermacentor variablis (Say), which did not become infected. Capillary infected I. scapularis nymphs were capable of transmitting the infection to naive mice although not as efficiently as naturally infected nymphs. The capillary infection method is convenient and is a better alternative to syringe inoculation as a means of infecting animals with B. burgdorferi

    Silencing Expression of the Defensin, Varisin, in Male Dermacentor variabilis by RNA Interference Results in Reduced Anaplasma Marginale Infections

    Get PDF
    Antimicrobial peptides, including defensins, are components of the innate immune system in ticks that have been shown to provide protection against both gram-negative and gram-positive bacteria. Varisin, one of the defensins identified in Dermacentor variabilis, was shown to be produced primarily in hemocytes but transcript levels were also expressed in midguts and other tick cells. In this research, we studied the role of varisin in the immunity of ticks to the gram-negative cattle pathogen, Anaplasma marginale. Expression of the varisin gene was silenced by RNA interference (RNAi) in which male ticks were injected with varisin dsRNA and then allowed to feed and acquire A. marginale infection on an experimentally-infected calf. Silencing expression of varisin in hemocytes, midguts and salivary glands was confirmed by real time RT-PCR. We expected that silencing of varisin would increase A. marginale infections in ticks, but the results demonstrated that bacterial numbers, as determined by an A. marginale msp4 quantitative PCR, were significantly reduced in the varisin-silenced ticks. Furthermore, colonies of A. marginale in ticks used for RNAi were morphologically abnormal from those seen in elution buffer injected control ticks. The colony shape was irregular and in some cases the A. marginale appeared to be free in the cytoplasm of midgut cells. Some ticks were found to be systemically infected with a microbe that may have been related to the silencing of varisin. This appears to be the first report of the silencing of expression of a defensin in ticks by RNAi that resulted in reduced A. marginale infections

    Genomic Insights Into the Ixodes Scapularis Tick Vector of Lyme Disease

    Get PDF
    Ticks transmit more pathogens to humans and animals than any other arthropod. We describe the 2.1 Gbp nuclear genome of the tick, Ixodes scapularis (Say), which vectors pathogens that cause Lyme disease, human granulocytic anaplasmosis, babesiosis and other diseases. The large genome reflects accumulation of repetitive DNA, new lineages of retro-transposons, and gene architecture patterns resembling ancient metazoans rather than pancrustaceans. Annotation of scaffolds representing ~57% of the genome, reveals 20,486 protein-coding genes and expansions of gene families associated with tick-host interactions. We report insights from genome analyses into parasitic processes unique to ticks, including host \u27questing\u27, prolonged feeding, cuticle synthesis, blood meal concentration, novel methods of haemoglobin digestion, haem detoxification, vitellogenesis and prolonged off-host survival. We identify proteins associated with the agent of human granulocytic anaplasmosis, an emerging disease, and the encephalitis-causing Langat virus, and a population structure correlated to life-history traits and transmission of the Lyme disease agent

    HlSRB, a Class B Scavenger Receptor, Is Key to the Granulocyte-Mediated Microbial Phagocytosis in Ticks

    Get PDF
    Ixodid ticks transmit various pathogens of deadly diseases to humans and animals. However, the specific molecule that functions in the recognition and control of pathogens inside ticks is not yet to be identified. Class B scavenger receptor CD36 (SRB) participates in internalization of apoptotic cells, certain bacterial and fungal pathogens, and modified low-density lipoproteins. Recently, we have reported on recombinant HlSRB, a 50-kDa protein with one hydrophobic SRB domain from the hard tick, Haemaphysalis longicornis. Here, we show that HlSRB plays vital roles in granulocyte-mediated phagocytosis to invading Escherichia coli and contributes to the first-line host defense against various pathogens. Data clearly revealed that granulocytes that up-regulated the expression of cell surface HlSRB are almost exclusively involved in hemocyte-mediated phagocytosis for E. coli in ticks, and post-transcriptional silencing of the HlSRB-specific gene ablated the granulocytes' ability to phagocytose E. coli and resulted in the mortality of ticks due to high bacteremia. This is the first report demonstrating that a scavenger receptor molecule contributes to hemocyte-mediated phagocytosis against exogenous pathogens, isolated and characterized from hematophagous arthropods

    Nonrandom Distribution of Vector Ticks (Dermacentor variabilis) Infected by Francisella tularensis

    Get PDF
    The island of Martha's Vineyard, Massachusetts, is the site of a sustained outbreak of tularemia due to Francisella tularensis tularensis. Dog ticks, Dermacentor variabilis, appear to be critical in the perpetuation of the agent there. Tularemia has long been characterized as an agent of natural focality, stably persisting in characteristic sites of transmission, but this suggestion has never been rigorously tested. Accordingly, we sought to identify a natural focus of transmission of the agent of tularemia by mapping the distribution of PCR-positive ticks. From 2004 to 2007, questing D. variabilis were collected from 85 individual waypoints along a 1.5 km transect in a field site on Martha's Vineyard. The positions of PCR-positive ticks were then mapped using ArcGIS. Cluster analysis identified an area approximately 290 meters in diameter, 9 waypoints, that was significantly more likely to yield PCR-positive ticks (relative risk 3.3, Pβ€Š=β€Š0.001) than the rest of the field site. Genotyping of F. tularensis using variable number tandem repeat (VNTR) analysis on PCR-positive ticks yielded 13 different haplotypes, the vast majority of which was one dominant haplotype. Positive ticks collected in the cluster were 3.4 times (relative riskβ€Š=β€Š3.4, P<0.0001) more likely to have an uncommon haplotype than those collected elsewhere from the transect. We conclude that we have identified a microfocus where the agent of tularemia stably perpetuates and that this area is where genetic diversity is generated

    Genomic insights into the Ixodes scapularis tick vector of Lyme disease

    Get PDF
    Citation: Gulia-Nuss, M., Nuss, A. B., Meyer, J. M., Sonenshine, D. E., Roe, R. M., Waterhouse, R. M., . . . Hill, C. A. (2016). Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nature Communications, 7, 13. doi:10.1038/ncomms10507Additional Authors: Koren, S.;Hostetler, J. B.;Thiagarajan, M.;Joardar, V. S.;Hannick, L. I.;Bidwell, S.;Hammond, M. P.;Young, S.;Zeng, Q. D.;Abrudan, J. L.;Almeida, F. C.;Ayllon, N.;Bhide, K.;Bissinger, B. W.;Bonzon-Kulichenko, E.;Buckingham, S. D.;Caffrey, D. R.;Caimano, M. J.;Croset, V.;Driscoll, T.;Gilbert, D.;Gillespie, J. J.;Giraldo-Calderon, G. I.;Grabowski, J. M.;Jiang, D.;Khalil, S. M. S.;Kim, D.;Kocan, K. M.;Koci, J.;Kuhn, R. J.;Kurtti, T. J.;Lees, K.;Lang, E. G.;Kennedy, R. C.;Kwon, H.;Perera, R.;Qi, Y. M.;Radolf, J. D.;Sakamoto, J. M.;Sanchez-Gracia, A.;Severo, M. S.;Silverman, N.;Simo, L.;Tojo, M.;Tornador, C.;Van Zee, J. P.;Vazquez, J.;Vieira, F. G.;Villar, M.;Wespiser, A. R.;Yang, Y. L.;Zhu, J. W.;Arensburger, P.;Pietrantonio, P. V.;Barker, S. C.;Shao, R. F.;Zdobnov, E. M.;Hauser, F.;Grimmelikhuijzen, C. J. P.;Park, Y.;Rozas, J.;Benton, R.;Pedra, J. H. F.;Nelson, D. R.;Unger, M. F.;Tubio, J. M. C.;Tu, Z. J.;Robertson, H. M.;Shumway, M.;Sutton, G.;Wortman, J. R.;Lawson, D.;Wikel, S. K.;Nene, V. M.;Fraser, C. M.;Collins, F. H.;Birren, B.;Nelson, K. E.;Caler, E.;Hill, C. A.Ticks transmit more pathogens to humans and animals than any other arthropod. We describe the 2.1 Gbp nuclear genome of the tick, Ixodes scapularis (Say), which vectors pathogens that cause Lyme disease, human granulocytic anaplasmosis, babesiosis and other diseases. The large genome reflects accumulation of repetitive DNA, new lineages of retro-transposons, and gene architecture patterns resembling ancient metazoans rather than pancrustaceans. Annotation of scaffolds representing similar to 57% of the genome, reveals 20,486 protein-coding genes and expansions of gene families associated with tick-host interactions. We report insights from genome analyses into parasitic processes unique to ticks, including host 'questing', prolonged feeding, cuticle synthesis, blood meal concentration, novel methods of haemoglobin digestion, haem detoxification, vitellogenesis and prolonged off-host survival. We identify proteins associated with the agent of human granulocytic anaplasmosis, an emerging disease, and the encephalitis-causing Langat virus, and a population structure correlated to life-history traits and transmission of the Lyme disease agent

    First Transcriptome of the Testis-Vas Deferens-Male Accessory Gland and Proteome of the Spermatophore from Dermacentor variabilis (Acari: Ixodidae)

    Get PDF
    Ticks are important vectors of numerous human diseases and animal diseases. Feeding stimulates spermatogenesis, mating and insemination of male factors that trigger female reproduction. The physiology of male reproduction and its regulation of female development are essentially a black box. Several transcriptomes have catalogued expression of tick genes in the salivary glands, synganglion and midgut but no comprehensive investigation has addressed male reproduction and mating. Consequently, a new global approach using transcriptomics, proteomics, and quantitative gene expression is needed to understand male reproduction and stimulation of female reproduction

    Biology of Francisella tularensis Subspecies holarctica Live Vaccine Strain in the Tick Vector Dermacentor variabilis

    Get PDF
    Background: The c-proteobacterium Francisella tularensis is the etiologic agent of seasonal tick-transmitted tularemia epizootics in rodents and rabbits and of incidental infections in humans. The biology of F. tularensis in its tick vectors has not been fully described, particularly with respect to its quanta and duration of colonization, tissue dissemination, and transovarial transmission. A systematic study of the colonization of Dermacentor variabilis by the F. tularensis subsp. holarctica live vaccine strain (LVS) was undertaken to better understand whether D. variabilis may serve as an inter-epizootic reservoir for F. tularensis. Methodology/Principal Findings: Colony-reared larva, nymph, and adult D. variabilis were artificially fed LVS via glass capillary tubes fitted over the tick mouthparts, and the level of colonization determined by microbial culture. Larvae and nymphs were initially colonized with 8.860.8610 1 and 1.160.03610 3 CFU/tick, respectively. Post-molting, a significant increase in colonization of both molted nymphs and adults occurred, and LVS persisted in 42 % of molted adult ticks at 126 days post-capillary tube feeding. In adult ticks, LVS initially colonized the gut, disseminated to hemolymph and salivary glands by 21 days, and persisted up to 165 days. LVS was detected in the salivary secretions of adult ticks after four days post intra-hemocoelic inoculation, and LVS recovered from salivary gland was infectious to mice with an infectious dose 50 % of 3 CFU. LVS in gravid female ticks colonized via the intra-hemocoelic route disseminated to the ovaries and then t
    • …
    corecore